

1	Uptake selectivity of Methanesulfonic Acid (MSA) on fine
2	particles over polynya regions of the Ross Sea, Antarctica
3	Jinpei Yan ^{*1,2} , Jinyoung Jung ³ , Miming Zhang ^{1,2} , Federico Bianchi ⁴ , Yee Jun Tham ⁴ , Suqing Xu ^{1,2} ,
4	Qi Lin ^{1,2} , Shuhui Zhao ^{1,2} , Lei Li ⁵ , Liqi Chen ^{1,2}
5	1 Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Xiamen 361005, China;
6	2 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
7	3 Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea;
8	4 Institute for Atmospheric and Earth System Research; University of Helsinki, 00014, Finland;
9	5 Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
10	Abstract: The uptake of methanesulfonic acid (MSA) on existing particles is a major route of the particulate MSA
11	formation, however, MSA uptake on different particles is still lack of knowledge. Characteristics of MSA uptake
12	on different aerosol particles were investigated in polynya regions of the Ross Sea, Antarctica. Particulate MSA
13	mass concentrations, as well as aerosol populations and size distributions, were observed simultaneously for the
14	first time to access the uptake of MSA on different particles. The results showed that MSA mass concentration did
15	not always reflect MSA particle population in the marine atmosphere. MSA uptake on aerosol particles increased
16	the particle size and changed aerosol chemical compositions, but did not increase the particle population. The
17	uptake rates of MSA on existing particles were significantly influenced by aerosol chemical properties. The favor
18	uptake of MSA occurred on the sea salt particles, as MSA-Na and MSA-Mg particles were abundant in the Na and
19	Mg particles, accounting for 0.43 ± 0.21 and 0.41 ± 0.20 of the total Na and Mg particles, respectively. However,
20	acidic and hydrophobic particles suppressed the MSA uptake, as $\mathrm{MSA}\text{-}\mathrm{EC}$ and $\mathrm{MSA}\text{-}\mathrm{SO_4}^{2\text{-}}$ accounted only
21	0.24 ± 0.68 and 0.26 ± 0.47 of the total EC and $\mathrm{SO_4}^{2\text{-}}$ particles, respectively. The results extended the knowledge of
22	the formation and environmental behavior of MSA in the marine atmosphere.
23	<i>Keywords</i> : Methanesulfonic acid (MSA); nss-SO ₄ ²⁻ ; aerosol; climate change; Antarctica

24 1. Introduction

^{*}Corresponding author. Tel.: +86 592 2195370; Fax: +86 592 2195280, E-mail address: jpyan@tio.org.cn; Address: No.178 Daxue Road, Siming district Xiamen, Third Institute of Oceanography, MNR, 361005, P R China.

Methanesulfonic acid (MSA) and non-sea-salt-sulfate (nss-SO₄²⁻), deriving from the oxidation 25 of dimethyl sulfide (DMS), are important sources of cloud condensation nuclei (CCN) in the 26 marine boundary layer (Chang et al., 2011; Ghahremaninezhad et al., 2016). Different from 27 nss-SO4²⁻, MSA is exclusively from the oxidation of DMS in the atmosphere (Sorooshian et al., 28 29 2007). Thus, MSA was expected as a useful marker for the deconvolution of sulfate from marine biogenic and non biogenic sources (Legrand et al., 1998). The ratio of MSA to nss-SO₄²⁻ is often 30 31 used to assess the DMS oxidation routes and the contributions of biogenic sulfur to other sulfur sources (Sorooshian et al., 2007; Wang et al., 2014). DMS oxidation routes, as well as the 32 products of MSA and nss-SO₄²⁻, have been investigated previously in the marine atmosphere 33 34 (Preunkert et al., 2008; Kloster et al., 2006).

Generally, particulate MSA was generated from the reactive uptake of DMS and condensation of 35 36 gaseous MSA on aerosol particles (Davis et al., 1998; Barnes et al., 2006). A recent study showed 37 that MSA may increase sulfate cluster formation rate by up to one order of magnitude, increasing the stability of the clusters (Bork et al., 2014). However, previous studies have showed that SO₄²⁻ 38 39 was more effective at new particle formation (NPF) than MSA, while MSA was more likely to 40 condense onto existing particles (Hayashida et al., 2017). Although the reactive uptake of MSA 41 on fine particles was demonstrated in the previous studies (Sorooshian et al., 2007; Bates et al., 42 1992), the influence of aerosol characteristics on MSA uptake has not been presented.

43 The chemical components and sources of aerosol particles in the marine atmosphere were 44 rather complicated (Weller et al., 2018). Filtered sample methods were often used in previous 45 studies (Jung et al., 2014; Preunkert et al., 2007; Read et al., 2008) with a long sampling interval 46 to accommodate the detection limit of the instrument (Preunkert et al., 2007; Zhang et al., 2015). 47 It is, therefore, difficult to clarify how MSA mixes with other aerosol species, using bulk aerosol 48 sampling methods, as only the mean aerosol chemical components were presented during the sampling period (Bates et al., 1992; Chen et al., 2012). On-line aerosol mass spectrometry has 49 50 been used to characterize the aerosol chemical species and sizes with high-time-resolution (Yan et 51 al., 2018; Healy et al., 2010), allowing the determination of particle mixing states and sources. 52 Although a few studies have shown that MSA was often associated with Mg in aerosol particles, 53 probably due to marine biogenic activity (Casillas-Ituarte et al., 2010), studies of the interactions

54 between MSA and other aerosol species were rare. Theoretical and laboratory studies have 55 attempted to explain these observations and determine in which state MSA enters the aerosol 56 particles (Bork et al., 2014). However, the relative likelihood of MSA uptake on different particles 57 remains uncertain.

58 In this study, we examined the uptake characteristics of MSA on different particles over polynya 59 regions in the Ross Sea (RS), Antarctica, based on high-time-resolution observations. MSA mass 60 concentrations and particle populations, as well as aerosol compositions and size distributions, 61 were measured simultaneously for the first time in the RS using an in-situ gas and aerosol 62 compositions (IGAC) and a single particle aerosol mass spectrometer (SPAMS) monitoring 63 instruments. Observations were carried out in two different seasons, the early December with 64 intensity sea ice coverage and in the mid-January to February with sea ice free in the RS. The 65 selectivity of MSA uptake on different particles was investigated in the RS with different 66 circumstances.

67 2. Experiment methods and observation regions

68 The observations were carried out on-board of R/V "Xuelong", covering a large region of the RS, Antarctica (50°S to 78°S, 160°E to 185°E) (Fig. S1) with different sea ice concentrations. The 69 70 leg I was carried out from December 2 to 20, 2017. The sea surfaces were covered with intense 71 sea ices in the RS during this period (Fig. S4a). However, when we arrived back in the RS (leg II, 72 from January 13 to February 14, 2018), the sea ices have almost melted in the RS (Fig. S4b). 73 2.1 Observation instruments and sampling inlet 74 An in-situ gas and aerosol compositions monitoring system (IGAC, Model S-611, Machine 75 Shop, Fortelice International Co., Ltd., Taiwan; http://www.machine-shop.com.tw/), and a single 76 particle aerosol mass spectrometer (SPAMS, Hexin Analysis Instrument Co., Ltd.) were used to 77 determine aerosol water-soluble ion species, particle size distributions and chemical compositions,

99

- respectively (Fig. S2). The sampling inlet connecting to the monitoring instruments was fixed to a 78 79 mast 20 meters above the sea surface. A total suspended particulate (TSP) sampling inlet was 80 positioned at the top of the mast. Conductive silicon tubing with an inner diameter of 1.0 cm was 81 used to make the connection to all instruments. 82 2.2 Aerosol water-soluble ion species 83 Gases and aerosol water-soluble ion species were determined using a semi-continuous IGAC 84 monitor. Gases and aerosols were separated and streamed into a liquid effluent for on-line 85 chemical analysis at an hourly temporal resolution (Young et al., 2016; Liu et al., 2017). The 86 analytical design and methodology for the determination of gases and aerosol water-soluble ions 87 have been described in detail by Tao (2018) and Tian (2017). Fine particles were firstly enlarged 88 by vapor condensation and subsequently accelerated through a conical-shaped impaction nozzle 89 and collected on the impaction plate. The samples were then subsequently analyzed for anions and 90 cations by an on-line ion chromatography (IC) system (DionexICS-3000). The injection loop size 91 was 500 µL for both anions and cations. Six to eight concentrations of standard solutions were selected for calibration, depending on the target concentration, in which the R² was above 0.997 92 (Fig. S3). The detection limits for MSA⁺, SO₄²⁻, Na⁺, and Cl⁻ were 0.09, 0.12, 0.03, and 0.03 μ g/L 93 94 (aqueous solution), respectively. 95 2.3 Aerosol size distribution and chemical compositions 96 The detection method for fine particles using a SPAMS has been described in detail by Li (Li et al., 2011; Li et al., 2014). Particles were introduced into the vacuum system through a critical 97 98 orifice, then focused and accelerated to form a particle beam with specific velocity. The particle
- 100 light was detected by two Photomultiplier Tubes (PMTs). The velocity of a single particle was
 - 4

beam was passed through two continuous diode Nd: YAG lasers (532 nm), where the scattered

- 101 then determined and converted into its aerodynamic diameter. The individual particle was ionized
- 102 with a 266 nm Nd: YAG laser to produce positive and negative ions. The fragment ions were
- 103 analyzed using a bipolar time-of-flight mass spectrometer. The power density of the ionization
- 104 laser was kept at 1.56×10^8 w/cm².
- 105 The particle size data and mass spectra were analyzed using the YAADA software toolkit
- 106 (http://www.yaada.org/) (Allen 2005). An adaptive resonance theory based neural network
- 107 algorithm (ART-2a) was applied to cluster individual particles into separate groups based on the
- 108 presence and intensity of ion peaks in the single particle mass spectrum (Song et al., 1999), with a
- 109 vigilance factor of 0.65, a learning rate of 0.05, and a maximum of 20 iterations.
- 110 2.4 Metrological data
- 111 Meteorological parameters such as temperature, humidity, wind speed, and direction were
- 112 measured continuously using an automated meteorological station deployed in the R/V "Xuelong",
- 113 which was located on the top deck of the vessel.
- 114 2.5 Satellite data of sea ice and chlorophyll-a

115 In this study, we used remote sensing data to show the spatial and temporal distribution of 116 chlorophyll and sea ice concentrations in the study region. Due to the cloud effect and swath limits, 117 we chose the 8-day datasets for the remote sensing of chlorophyll-a from MODIS-Aqua 118 (http://oceancolor.gsfc.nasa.gov) with a spatial resolution of 4 km. We used the sea ice on 119 centration data from the daily 3.125-km AMSR2 dataset (Spreen et al., 2008) (available at 120 https://seaice.uni-bremen.de). Each grid of the gridded datasets with a sea ice concentration less 121 than or equal to 15 % was regarded as comprising all water (Cavalieri et al., 2003). The time series 122 of the total regional mean value in the study region was then plotted.

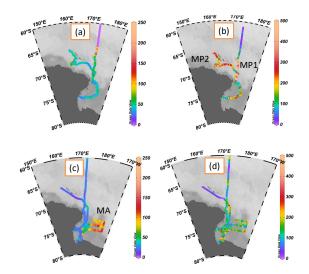
- 123 **3. Results and discussion**
- 124 3.1. Spatial distributions of MSA mass concentration and particle population

125 MSA mass concentrations and their populations were measured continuously in the RS. MSA

126 concentrations ranged from 14.6 to 210.8 ng.m⁻³, with an average of 43.8±22.1 ng.m⁻³ during leg

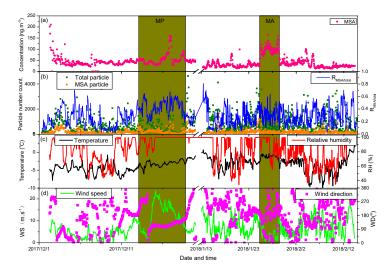
127	I (Fig.1a), consisting with summertime MSA levels recorded at Halley station, averaging 35.3
128	ng.m ⁻³ (75°39'S) and Dumont d'Urville station (66°40'S) (Minikin et al., 1998), averaging 49
129	ng.m ⁻³ , but lower than those reported at Palmer station, averaging 122 ng.m ⁻³ (64°77' S) (Savoie et
130	al., 1993). The highest MSA levels occurred at the region ($64^{\circ} - 67^{\circ}$ S), with an maximum value of
131	210.8 ng.m^{-3} (Fig. 1a), consisting with the previous observation results from the Southern Ocean
132	(60 - 70° S; maximum MSA level of 260 ng.m ⁻³) (Chen et al., 2012). In this study, elevated MSA
133	levels were associated with the dynamic sea ice edge at $\sim 64^{\circ}$ S, once the sea ice started to melt in
134	the early December (Fig. S4a and Fig. S4c). The release of iron (De Baar et al., 1995; Wang et al.,
135	2014) and algae (Lizotte et al., 2001; Loose et al., 2011) from sea ice increased phytoplankton
136	numbers (Taylor et al., 2013), resulting in the increase of DMS generation and emission
137	(Hayashida et al., 2017). This, in turn, increased MSA levels due to the oxidation of DMS in the
138	atmosphere.
139	MSA particle populations (0.1 - 2.5 $\mu m)$ were determined simultaneously by SPAMS during the
140	leg I (Fig. 1b). The highest average hourly MSA particle population (507 \pm 189) occurred at

141 MP1 ($68^{\circ} - 72^{\circ}S$, $172^{\circ}E$) near the Antarctic continent, following by MP2 ($65^{\circ} - 68^{\circ}S$, $160^{\circ} - 170^{\circ}$ 142 E), with an average particle population of 344 \pm 334. High MSA particle populations were 143 associated with high wind speeds in these regions (MP1 8.06 \pm 1.86m/s; MP2 15.76 \pm 3.93m/s;


144 Fig. 2).

The MSA concentration ranged from 11.4 - 165.4 ng•m⁻³ (with an average of 38.8 ± 27.5 ng•m⁻³) during leg II, and the MSA particle population ranged from 3 - 1666 (with an average of 168 ± 172; Fig. 1c and 1d). Extremely high MSA levels, with an average of 100.3 ± 18.6 ng•m⁻³, were observed in the MA region (170.2° - 177.4°E, 68.2° - 77.8°S), but we did not observed high MSA

149 particle populations in this region (with an average of 171 ± 159). High MSA particle numbers 150 with low MSA concentrations occurred at MP1 and MP2 (Fig.1a and 1b). It indicated that MSA 151 mass concentrations did not always reflect the MSA particle populations in the marine atmosphere. 152 Generally, the uptake of MSA on aerosol surfaces (Read et al., 2008) only changed the aerosol 153 size and chemical compositions, without varying their population. Hence, the MSA particle 154 population was mainly associated with the aerosol number in the atmosphere, as more particles 155 were provided for the uptake of MSA in high particle population. Though high levels of MSA 156 would also increase the MSA population, high MSA mass concentrations with low MSA populations were observed in this study. This phenomenon occurred when low existing particle 157 158 populations and high MSA mass concentrations were presented in the marine atmosphere.



- 159
- Fig.1 Spatial distribution of MSA mass concentrations and particle populations, (a) MSA mass
 concentrations during leg I (ng.m⁻³); (b) MSA particle populations during leg I; (c) MSA mass
 concentrations during leg II (ng.m⁻³) and (d) MSA particle populations during leg II.
 3.2. Linkage between MSA concentration and particle population
 To verify the relationship between MSA mass concentration and particle population, the
- 165 temporal distributions of MSA mass concentration and particle number are illustrated in Fig. 2.
- 166 Variations of MSA mass concentration were not always associated with the MSA particle

- population during the observation periods (Fig. 2a and Fig. 2b). MSA particle number did not show an obvious correlation with MSA mass concentration (Fig. S5a), indicating that the major factors regulating MSA mass concentration and MSA particle population were different. High MSA particle populations often occurred in conjunction with high wind speeds (Fig. 2b and 2d), while high MSA mass concentrations were not always observed at high wind speed regions, such as extremely high MSA mass concentrations with low wind speeds were presented at MA (Fig. 2a, 2b and 2d).
- 174 MSA mass concentrations were determined by the oxidation of DMS, derived from marine phytoplankton activity (Davis et al., 1998; Barnes et al., 2006; Read et al., 2008), but MSA 175 particle populations were mainly associated with the uptake of MSA on existing particles. High 176 177 existing particle populations led to high MSA particle populations, as the formation of particulate 178 MSA often occurred on the surfaces of existing particles (Read et al., 2008). In this study, the 179 variation of MSA particle population consisted with the variation of total particle population 180 during the observation period (Fig. 2b). A strong positive correlation between MSA particle population and total particle population were presented (slope=0.19, r²=0.65, n=1195, Fig. S5b). 181 The ratio of MSA particle population to total particle population (R_{MSA/total}) concentrated on the 182 183 range of 0.2 - 0.5, with an average of 0.29 ± 0.15 (Fig. 2b).

184

Fig. 2 Relationship between MSA mass concentration and MSA particle population in the context of various environmental factors. (a) Time series of MSA mass concentrations; (b) Time series of

187 188	MSA particle population, total particle population and the ratio of MSA particle population and total particle population; (c) Time series of temperature and relative humidity and (d) Time series
189	of wind speeds and direction.
190	3.3. Signatures of MSA particle types
191	During leg I, 332438 single particles with positive and negative mass spectra were obtained,
192	while 603098 single particles with positive and negative mass spectra were obtained during leg II.
193	MSA particles, identified during the cruise using the ART-2a algorithm (Song et al., 1999),
194	accounted for 27.69 % and 22.08 % of the total particles during leg I and leg II, respectively. To
195	investigate the interactions between MSA and other species, MSA particles were further classified
196	into seven sub-types, including MSA-Na, MSA-Mg, MSA-SO42-, MSA-K, MSA-EC, MSA-OC,
197	and $MSA-NO_x^-$.
198	3.3.1 MSA-Na particles
199	Sodium, which is often associated with sea salt particles in the marine atmosphere (Teinila et
200	al., 2014), is an important component of atmospheric aerosols in ocean regions (Yan et al., 2018).
201	Fig. 3a illustrates the average mass spectra of MSA-Na particles during leg I and leg II. Strong
202	Na^+ peaks with weak K^+ , Ca^+ , and Na_2Cl^+ peaks were observed in the positive spectrum, while
203	strong NaCl ₂ and MSA peaks with low Cl, HSO_4 , NO_3 , and O peaks were observed in the
204	negative spectrum. Similar average mass spectra for MSA-Na particles were observed during leg I
205	and leg II, even though the two measurements were carried out under different circumstances.
206	MSA-Na particles were the most dominant type of MSA particles, accounting for more than 30 $\%$
207	of total MSA particles (Fig. 4).
208	3.3.2 MSA-Mg particles

209 Mg is another common component in ocean-derived particles, hence, such particles are often 210 classified as sea salt particles in the marine atmosphere. However, some previous studies have

211	shown that the chemical properties of Mg particles observed in marine environment were distinct
212	from those of sea salt particles (Gaston et al., 2011). In this study, the mass spectral characteristics
213	of MSA-Mg type particles included strong MSA ⁻ and Mg peaks (Fig. 3b). In sea salt particles, the
214	dominant peak was typically Na^+ rather than Mg^+ (Fig. 3a) due to the higher concentration of Na^+
215	in seawater (Guazzotti et al., 2001). Similar with MSA-Na type particles, strong Na^+ and $NaCl_2^-$
216	peaks with weak Cl ⁺ , NO ₃ ⁻ , K^+ , and Ca ⁺ peaks were observed in the mass spectra, indicating that
217	MSA-Mg type particles were also derived from sea salt particles. Strong positive correlation
218	$(r^2=0.95)$ between MSA-Na and MSA-Mg was presented in this study (Fig. S6), indicating that
219	these two types of particles were derived from the same sources. However, the abundance of $\mbox{Mg}^{\scriptscriptstyle +}$
220	fragment ion relative to Na ⁺ fragment ion in MSA-Mg type particles was different from MSA-Na
221	type particles, indicating that MSA-Mg particles were also affected by other sources. Studies have
222	shown that Mg particles were correlated strongly with atmospheric DMS ($r^2=0.76$) (Gaston et al.,
223	2011), indicating that Mg particles were also impacted by marine biological materials, such as cell
224	debris or fragments, viruses, bacteria, or the organics released by lysed cells (Casillas-Ituarte et al.,
225	2010; Gaston et al., 2011). Hence, MSA-Mg type particles were associated with both sea salt
226	particles and biological emissions.

227 **3.3.3 MSA-SO**₄²⁻ particles

SO₄²⁻ may be derived from different sources, such as sea salt aerosols, anthropogenic emissions, marine biogenic and volcanic sources (Legrand et al., 1998). Strong signals, peeking at m/z -97 HSO₄⁻ and m/z -95 MSA⁻, were presented in the negative spectrum (seen in Fig. 3c), consisting with previous studies with intense signals of HSO₄⁻ and MSA⁻occurred at m/z -97 and m/z -95 (Gaston et al., 2011; Silva et al., 2000). The simultaneous present of K⁺, Na⁺, Al⁺, and Fe⁺

- 233 peaks in the positive mass spectrum and $NaCl_2^-$, NO_3^- , C_4H^- and $C_2H_2^-$ peaks in the negative mass
- 234 spectrum, suggesting that MSA-SO₄² particles were associated with different sources. This can be
- 235 further demonstrated by the size distribution of MSA-SO₄²⁻ particles (Fig. 5), as MSA-SO₄²⁻
- 236 particles are found in both fine and coarse particles.

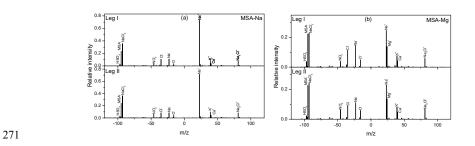
237 3.3.4 MSA-K particles

The positive mass spectrum of the MSA-K particles was dominated by a strong K^+ peak with weak Na⁺, C₂H₃⁺ and C₃H₇⁺ peaks (Fig. 3d). Strong HSO₄⁻, and MSA⁻ signals were presented in the negative mass spectrum. Abundance of organic ion fragments were observed in the mass spectra of MSA-K particles. Generally, K was expected as a marker of biomass-burning source in continental areas (Yan et al., 2018). However, the mass spectra of MSA-K particles observed here were very different from the mass spectra of K particles observed in continental areas, suggesting that K particles from marine sources were quite different from continental sources.

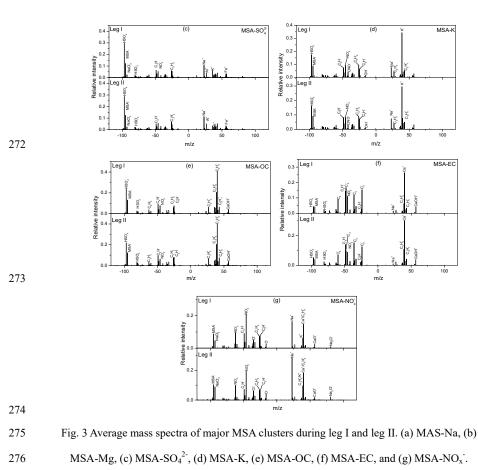
245 3.3.5 MSA-OC particles

OC particles are often associated with anthropogenic sources, such as vehicle and coal combustion (Silva et al., 2000; Stiaras et al., 2008), marine biogenic sources (Quinn et al., 2014) and secondary sources (e.g. photochemical reaction from their precursor organic gases) (Horne et al., 2018). The positive and negative mass spectra of MSA-OC were dominated by C_xH_y ion peaks (i.e., $C_2H_3^+$, C_3H^+ , $C_3H_3^+$, $C_3H_4^+$, and $C_3H_7^+$; Fig. 3e). Strong signals of HSO₄⁻ and MSA⁻ fragment ions were also presented in the negative spectrum, while a few signals of Na⁺ and Cl⁻ were observed in the positive mass spectrum (Fig. 3e).

253 3.3.6 MSA-EC particles

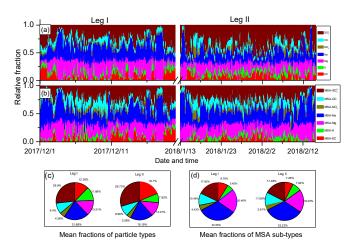

EC particles are often associated with primary emissions; that is, the incomplete combustion

255	of carbon-containing materials (Murphy et al., 2009). In this study, MSA-EC particles were
256	characterized by strong peaks of $C_n^-(C_4^-, C_3^-)$ in the negative spectrum, while the positive
257	mass spectrum were dominated by Ca^+ ions (Fig. 3f). Compare with the average mass spectra of
258	MSA-OC particles, the abundances of MSA ⁻ and HSO ₄ ⁻ fragment ions were lower in MSA-EC
259	particles, indicating that the uptake of MSA on EC particles might be more difficult than the
260	uptake of MSA on OC particles. Similar with the mass spectra of MSA-OC particles, a few
261	fragments of Na^+ and Cl^- were observed in the MSA-EC mass spectra, suggesting that MSA-OC
262	and MSA-EC particles rarely mixed with sea salt particles.
263	3.3.7 MSA-NO ⁻ x particles


The negative spectrum of MSA-NO^{*}_x particle was dominated by strong peaks of MSA⁺, NO₂⁻, and NO₃⁻, with weak $C_xH_y^-$, O⁺, and Cl⁻ peaks (Fig. 3g). Strong Na⁺, $(C_3H_3^+)/K^+$, and $(C_3H_4^+)/Ca^+$ peaks with weak Na₂Cl⁺ and CaO⁺ peaks were observed in the positive spectrum. Sea salt particles reacted with atmospheric HNO₃ easily to form nitrate and hydrogen chloride (Adachi et al., 2015). The abundance of Na⁺, Cl⁻, and NaCl₂⁻ ions in the mass spectra of the MSA-NO^{*}_x particles demonstrated these particles were formed by the interaction between sea salt particles and NO^{*}_x in the marine atmosphere.

12

277 3.4 Uptake characteristics of MSA on existing particles


In this study, Na, Mg, and SO_4^{2-} were the most abundant particles (Fig. 4a). Similar with Na, Mg, and SO_4^{2-} , MSA-Na, MSA-Mg, and MSA-S O_4^{2-} were also the three most abundant MSA particles (Fig. 4b), accounting for more than 70 % of the total MSA particles. It indicated that the uptake of MSA was associated with the particle population. However, we found that SO_4^{2-} was the most abundant particles of the total aerosol particles, while MSA-S O_4^{2-} was not the most abundant MSA particles in the atmosphere. The results revealed that the formation of particulate MSA on existing particles was affected by other factors, except particle population.

285 The average fractions of the MSA particle sub-types differed considerably from the average

286	fractions of their corresponding particle types (Fig. 4c and 4d). SO_4^{2-} was the most abundant
287	particles, accounting for 26.8% of the total particles (Fig. 4c). However, $MSA-SO_4^{2-}$ particles
288	accounted for only about 17.8% of the total MSA particles (Fig. 4d). Similarly, the relative
289	abundances of MSA-EC and MSA-K with respect to total MSA particles were lower than those of
290	EC and K with respect to the total particles. In contrast, MSA-Na particles were the most abundant
291	MSA particles, accounting for more than 32.55% of the total MSA particles (Fig. 4d), while Na
292	particles accounted for only 21.68% of the total particles (Fig. 4c). Similar patterns were observed
293	for Mg and OC particles. MSA-Mg and MSA-OC particles were more abundant in the MSA
294	particles than Mg and OC particles in the total particles (Fig. 4d). These results indicated that the
295	uptake of MSA on Na and Mg particles was more favorable than the uptake of MSA on EC and
296	$\mathrm{SO_4}^{2\text{-}}$ particles. Note that the observations during leg I and leg II were performed under different
297	circumstances, as high concentrations of sea ice were presented during leg I (Fig. S4a) but sea ice
298	free was presented during leg II (Fig. S4b). Despite different conditions were presented during leg
299	I and leg II, the relative fractions of MSA-type particles remained similar, conforming the uptake
300	selectivity of MSA occurred on different particles.

302 303 304 305	Fig. 4 Relative fractions of different particle types during leg I and leg II. (a) Relative fractions of different particle types; (b) Relative fractions of MSA-type particles; (c) Average fractions of different particle types during leg I and leg II; and (d) Average fractions of MSA-type particles during leg I and leg II.
306	The size distributions of total particles and MSA particles are illustrated in Fig. 5. The size of
307	the total particles showed an unimodal distribution, with a mean diameter of 0.51 $\mu\text{m},$ during leg I
308	and leg II (Fig. 5a). Most of the particles were 0.3-1.0 $\mu\text{m},$ consisting with particle sizes observed in
309	Antarctica using SMPS (Pant et al., 2011), and with sea spray aerosol sizes measured in marine
310	regions (Quinn et al., 2017). Compare with mean size of the total particles, MSA particles were larger
311	in this study, with a mean diameter of 0.65 μm (Fig. 5a). This suggested that particles were enlarged
312	when MSA uptake occurred on their surfaces. Although particles were enlarged by MSA uptake,
313	submicron MSA particles represented more than 90 % of the total MSA particles (Fig. 5b), indicating
314	that most of the MSA particles were still in the submicron range, consisting with observation results in
315	coastal Antarctica (Legrand et al., 1998) and the Pacific Ocean (Jung et al., 2014).
315 316	coastal Antarctica (Legrand et al., 1998) and the Pacific Ocean (Jung et al., 2014). The size-resolved MSA sub-type particles by population fraction during leg I and leg II were
316	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were
316 317	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were also given in this study. MSA-EC, MSA-K and MSA-NO _x [*] particles were primarily distributed in
316317318	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were also given in this study. MSA-EC, MSA-K and MSA-NO _x ⁻ particles were primarily distributed in small size (<1 μ m) (Fig. 5c). In contrast, high percentage of MSA-Na and MSA-Mg particles were
316317318319	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were also given in this study. MSA-EC, MSA-K and MSA-NO _x ⁻ particles were primarily distributed in small size (<1 μ m) (Fig. 5c). In contrast, high percentage of MSA-Na and MSA-Mg particles were presented in large particles (>1 μ m), accounting for more than 75 % of the total coarse particles
316317318319320	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were also given in this study. MSA-EC, MSA-K and MSA-NO _x ⁻ particles were primarily distributed in small size (<1 μ m) (Fig. 5c). In contrast, high percentage of MSA-Na and MSA-Mg particles were presented in large particles (>1 μ m), accounting for more than 75 % of the total coarse particles (Fig. 5c). However, MSA-SO ₄ ²⁻ and MSA-OC particles had a wide size distribution, mainly due to
 316 317 318 319 320 321 	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were also given in this study. MSA-EC, MSA-K and MSA-NO _x ⁻ particles were primarily distributed in small size (<1 μ m) (Fig. 5c). In contrast, high percentage of MSA-Na and MSA-Mg particles were presented in large particles (>1 μ m), accounting for more than 75 % of the total coarse particles (Fig. 5c). However, MSA-SO ₄ ²⁻ and MSA-OC particles had a wide size distribution, mainly due to the variety sources for these two types of particles. In this study, SO ₄ ²⁻ was mainly derived from
 316 317 318 319 320 321 322 	The size-resolved MSA sub-type particles by population fraction during leg I and leg II were also given in this study. MSA-EC, MSA-K and MSA-NO _x ⁻ particles were primarily distributed in small size (<1 μ m) (Fig. 5c). In contrast, high percentage of MSA-Na and MSA-Mg particles were presented in large particles (>1 μ m), accounting for more than 75 % of the total coarse particles (Fig. 5c). However, MSA-SO ₄ ²⁻ and MSA-OC particles had a wide size distribution, mainly due to the variety sources for these two types of particles. In this study, SO ₄ ²⁻ was mainly derived from sea salt particles and the oxidation of DMS. Sea salt aerosols generated by whitecaps and bursting

- Although the MSA particle and total particle populations during leg II were much higher than during leg I (Fig. 5a) and seasonal conditions were different between leg I and leg II (Fig. S4), the
- 328 size-resolved MSA sub-type particles identified during leg II were very similar with the
- 329 size-resolved MSA sub-type particles identified during leg I (Fig. 5c and 5d), confirming the
- 330 stable MSA uptake properties on different particles.

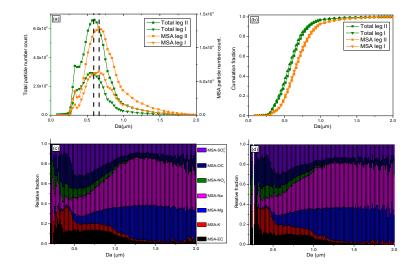
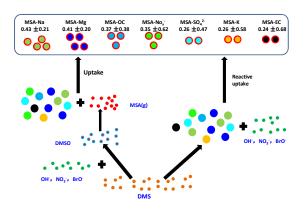


Fig. 5 Size distributions of MSA particles and size-resolved MSA sub-type particles during the
 cruise, (a) Size distributions of MSA particles and total particles, (b) Cumulative size distributions
 of MSA and total particles, (c) Size-resolved MSA sub-type particles during leg I, and (d)
 Size-resolved MSA sub-type particles during leg II.

336 3.5. The uptake rate of MSA on different particles

337 The uptake of MSA on the existing particles had been investigated, however, the pressing 338 question was how different aerosol properties impacted the uptake rates of MSA. Fig. 6 shows the 339 uptake rates of MSA (defined as the ratio of MSA-containing particles to the corresponding 340 particles, such as MSA-Na to Na ratio) on different particles in marine atmosphere. The formation 341 of particulate MSA included two routes, the reactive uptake of DMS on existing aerosols, and the 342 conversion of gaseous MSA to particulate MSA through condensation on existing particles (Read et al., 2008). High uptake rates of MSA-Na and MSA-Mg particles were observed in Na and Mg 343 particles, accounting for 0.43 \pm 0.21 and 0.41 \pm 0.20 of the total Na and Mg particles, 344 respectively (Fig. 6). There were two reasons for the effective uptake of MSA on Na and Mg 345


346 particles. Generally, Na and Mg particles are mainly derived from sea salt particles, which are 347 often alkaline. Previous studies have shown that alkaline sea salt particles were favor to absorb 348 acidic atmospheric gases, promoting the formation of acidic compounds on sea salt particles 349 (Laskin et al., 2003). As an acidic species, MSA was easily absorbed by sea salt particles to form 350 particulate MSA. The other one halogen radicals on the surfaces of sea salt particles also improved 351 the oxidative reactive uptake of DMS on sea salt particles to form particulate MSA (Read et al., 352 2008).

Low uptake rate (0.24 \pm 0.68) of MSA-EC particles was observed in this study (Fig. 6). EC 353 particles, emitting from fossil fuel combustion, are highly hydrophobic. In this case, it would 354 suppress the uptake of MSA on EC particles, as DMS reactive uptake often occurred through 355 aqueous reactions (Bardouki et al., 2003). The relative fraction of SO_4^{2-} particles was much higher 356 than that of EC particles (Fig. 4c). However, the uptake rate of MSA-SO₄²⁻ particles (0.26 \pm 357 358 0.47) was similar with that of MSA-EC particles (Fig. 6), indicating that particle population was 359 not the major factor affecting MSA uptake rate. The uptake rate of MSA on existing particles was significant dependent on particle characteristics. As SO_4^{2-} particles were often acidic, MSA uptake 360 by this type of particle was restricted. For this reason, even though the SO_4^{2-} particle population 361 was much higher than Na particle population, the uptake rate of MSA-SO₄²⁻ particles was much 362 lower than that of MSA-Na particles (Fig. 6). 363

Following by the MSA-Na and MSA-Mg particles, the uptake rates of MSA-OC and 364 MSA-NO_x particles were 0.37 \pm 0.38 and 0.35 \pm 0.62, respectively (Fig. 6). This consisted with 365 366 the relative abundances of MSA-OC and MSA-NO_x particles and the corresponding OC and NO_x 367 particles (Fig. 4). It indicates that the uptake rates of MSA on existing particles were determined by the aerosol properties, alkaline sea salt particles enhanced the uptake of MSA, while acidic and 368 369 hydrophobicity species suppressed the uptake of MSA on these particles. The differences of 370 uptake rates of MSA on different types of particles extended the knowledge of DMS oxidation and 371 the formation of particulate MSA in the marine atmosphere.

372

Fig. 6 MSA uptake rates on different aerosol particles in the marine atmosphere.4. Conclusions

The uptake characteristics of MSA on different aerosols were examined during the early December 2017 and January-February 2018 in the polynya regions of the RS, Antarctica. Particulate MSA mass concentration, as well as particle populations and size distributions, were determined simultaneously for the first time to characterize the formation of MSA on different particles. To access the interactions between MSA and other species, MSA particles were classified into seven sub-types using the ART-2a algorithm: MSA-Na, MSA-Mg, MSA-SO₄²⁻, MSA-K, MSA-EC, MSA-OC, and MSA-NO_x⁻.

MSA mass concentration did not always reflect MSA particle population in the marine atmosphere. MSA uptake occurred on aerosol surfaces altered the aerosol size and chemical compositions, but did not change the aerosol population. MSA particle number count was mainly associated with the total particle number count, as more particles implied a greater opportunity for MSA uptake. High MSA mass concentrations with low MSA population occurred, when low existing particle population with high MSA production from the oxidation of DMS were presented.

The uptake of MSA on existing particles was mainly dependent on aerosol properties. Alkaline sea salt particles enhanced the uptake of MSA, as high uptake rates of MSA-Na and MSA-Mg particles were observed in the Na and Mg particles, accounting for 0.43 ± 0.21 and 0.41 ± 0.20 of

the total Na and Mg particles, respectively. But acidic and hydrophobicity species suppressed the uptake of MSA on these particles, as only 0.24 ± 0.68 and 0.26 ± 0.47 of MSA-EC and MSA-SO₄²⁻ were presented in the total EC and SO₄²⁻ particles. The results extend the knowledge of the impact of aerosol properties on the conversion of MSA in the marine atmosphere, however, the details of the formation of MSA are complicated and still controversial. Observations and especially simulation experiments in the laboratory are need in the future to clarify the formation of MSA and their impact factors in the marine atmosphere.

399 Author contributions

JY conducted the observations, analyzed the results, and wrote the paper. JJ contributed the data analyses and paper writing. MZ conducted the on-board observations. FB and YT contributed to the refining the ideas and contributed considerably to the interpretation of the results. SX and SZ applied the calculations of sea ice distribution and Metrological data. QL and LL contributed the observation data analyses. LC and JY were together responsible for the design of the study. All authors were involved in discussing the results and improved the paper by proofreading.

406 Acknowledgements

407 This study is Financially Supported by Qingdao National Laboratory for marine science and 408 technology (No. QNLM2016ORP0109), the Natural Science Foundation of Fujian Province, 409 China (No. 2019J01120), the National Natural Science Foundation of China (No. 21106018, No. 410 41305133). Jinyoung Jung was supported by grants from Korea Polar Research Institute (KOPRI) 411 (PE19060). The authors gratefully acknowledge Guangzhou Hexin Analytical Instrument 412 Company Limited for the SPAMS data analysis and on-board observation technical assistance, 413 and Zhangjia Instrument Company Limited (Taiwan) for the IGAC technical assistance and data 414 analysis.

415 References

- 416 Adachi, K., Buseck, P. R. Changes in shape and composition of sea-salt particles upon aging in an urban
- 417 atmosphere. Atmos. Environ. 100, 1-9, 2015.
- 418 Allen, J.O. YAADA: Software Toolkit to Analyze Single-Particle Mass Spectral Data, 2005.
- 419 Barnes, I., Hjorth, J., Mihalopoulos, N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the

420	atmosphere. Chem. Rev. 106, 940-975, 2006
421	Bardouki, H., Berresheim, H., Erkoussis, M., Sciare, J., Kouvarakis, G., Oikonomou, K., Schneider, J.,
422	Mihalopoulos, N. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO) and particulate (sulphate and
423	methanesulfonate) sulphur species over the northeastern coast Crete. Atmos. Chem. Phys. 3, 1871-1886,
424	2003.
425	Bates, T. S., Calhoum, J. A., Quinn, P. K. Variations in the methane sulphonate to sulphate molar ratio in
426	submicrometer marine aerosol particles over the South Pacific Ocean. J. Geophys. Res. 97, 9859-9865, 1992.
427	Bork, N., Elm, J., Olenius, T., Vehkamaki. Methane sulfonic acid-enhanced formation of molecular clusters of
428	sulfuric acid and dimethyl amine. Atmos. Chem. Phy. 14, 12023-12030, 2014.
429	Casillas-Ituarte, N.N., Callahan, K. M., Tang, C.Y., Chen, X., Roeselova, M. Surface organization of aqueous
430	MgCl2 and application to atmospheric marine aerosol chemistry. PNAS, 107, 6616-6621, 2010.
431	Cavalieri, D. J., and Parkinson, C. L. 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea
432	ice variability. Geophys. Res. Lett. 30(18), 2003.
433	Chang, R. YW., Sjostedt, S. J., Pierce, J. R., Papakyriakou, T. N., Scarratt, M. G., Michaud, S., et al. Relating
434	atmospheric and oceanic DMS levels to particle nucleation events in the Canadian Arctic. J. Geophys. Res.
435	116, D00S03, 2011.
436	Chen, L., Wang, J., Gao, Y., Xu, G., Yang, X., Lin, Q., Zhang, Y. Latitudinal distributions of atmospheric MSA and
437	MSA/nss-SO42- ratios in summer over the high latitude regions of the Southern and Northern Hemispheres. J.
438	Geophys. Res. 117, D10306, 2012.
439	Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., Berresheim, H.
440	DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field
441	observations of DMS, DMSO, DMSO ₂ , H ₂ SO _{4(g} ,), MSA(g), and MSA(p). J. Geophys. Res. 103, 1657-1678,

442	1998.
443	De Baar, H. J., De Jong, J. T., Bakker, D. C., Löscher, B. M., Veth, C., Bathmann, U., Smetacek, V. Importance of
444	iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373, 412-415, 1995.
445	Gaston, C.J., Furutani, H., Guazzotti, S. A., Coffee, K.R., Bates, T.S., Quinn, P.K., Aluwihare, L.I. Mitchell, B.G.,
446	Prather, K. Unique ocean-derived particles serve as a proxy for changed in ocean chemistry. Journal of
447	Geophysical Research, 116, D18310, 2011
448	Guazzotti, S. A., Coffee, K. R., Prather K. A. Continuous measurements of size - resolved particle chemistry
449	during INDOEX Intensive Field Phase 99, J. Geophys. Res., 106(D22), 28,607 - 28,627,
450	doi:10.1029/2001JD900099, 2001.
451	Ghahremaninezhad, R., Norman, AL., Abbatt, J. P. D., Levasseur, M., Thomas, J. L. Biogenic, anthropogenic and
452	sea salt sulfate size-segregated aerosols in the Arctic summer. Atmos. Chem. Phy. 16, 5191-5202, 2016.
453	Hayashida, H., Steiner, N., Monahan, A., Galindo, V., Lizotte, M., Levasseur, M. Implications of sea-ice
454	biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic. Biogeosciences. 14,
455	3129-3155, 2017.
456	Healy, R. M., Hellebust, S., Kourtchev, I., Allanic, A., O'Connor, I. P., Bell, J. M., Healy, D. A., Sodeau, J. R.,
457	Wenger, J. C. Source apportionment of PM _{2.5} in Cork Harbour, Ireland using a combination of single particle
458	mass spectrometry and quantitative semi-continuous measurements. Atmos. Chem. Phy. 10, 9593-9613, 2010.
459	Horne, J.R., Zhu, S., Montoya-Aguilera, J., Hinks, M.L., Wingen, L.M., Nizkorodov, S.A., Dabdub, D. Reactive
460	uptake of ammonia by secondary organic aerosols: Implications for air quality. Atmos. Environ. 189, 1-8,
461	2018.
462	Jung, J., Furutani, H., Uematsu, M., Park, J Distributions of atmospheric non-sea-salt sulfate and methanesulfonic

463 acid over the Pacific Ocean between 48°N and 55°S during summer. Atmos. Environ. 99, 374-384, 2014.

- 464 Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., Wetzel, P. DMS cycle in the marine
- 465 ocean-atmosphere system? a global model study. Biogeosciences, 3, 29-51, 2006.
- 466 Laskin, A., Gaspar, D.J., Wang, W., Hunt, S. W., Cowin, J.P., Colson, S.D., Finlayson-Pitts, B.J. Reactions at
- 467 interfaces as a source of sulfate formation in sea-salt particles. Science, 301(5631), 340-344, 2003.
- 468 Legrand, M., Pasteur, E. C. Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and
- 469 surface snow. J. Geophys. Res. 103, 10991-11006, 1998.
- 470 Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G., Bi, X., Cheng, P., Zhou, Z. Real time
- 471 bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. Int. J. Mass Spectrom. 303,
- 472 118-124, 2011.
- 473 Li, L., Li, M., Huang, Z.X., Gao, W., Nian, H.Q., Fu, Z., Gao, J., Chai, F.H., Zhou, Z. Ambient particle
- 474 characterization by single particle aerosol mass spectrometry in an urban area of Beijing. Atmos. Environ. 94,
- 475 323-331, 2014.
- 476 Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., Zhu, T. Fine particle pH during
- 477 severe haze episodes in northern China, Geophys. Res. Lett. 44, 5213-5221, 2017.
- 478 Lizotte, M. P. The Contributions of Sea Ice Algae to Antarctic Marine Primary Production. Am. Zool. 41, 57-73,
- 479 2001.
- 480 Loose, B., Miller, L. A., Elliott, S., Papakyriakou, T. Sea ice biogeochemistry and material transport across the
- 481 frozen interface. Oceanography, 24, 202-218, 2011.
- 482 Minikin, A., Legrand, M., Hall, J., Wagenbach, D., Kleefeld, C., Wolff, E., Pasteur, E. C., Ducroz, F.
- 483 Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation, J.
- 484 Geophys. Res., 103, 10975-10990, 1998.
- 485 Murphy, S. M., Agrawal, H., Sorooshian, A., Padró, L.T., Gates, H., Hersey, S. Comprehensive simultaneous

- 486 shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ. Sci. Tech.
- 487 43, 4626-4640, 2009.
- 488 Norris, S. J., Brooks, I. M., Moat, B. I., Yelland, M. J. Near-surface measurement of sea spray aerosol production
- 489 over whitecaps in the open ocean. Ocean Sci. 9, 133-145, 2013.
- 490 Pant, V., Siingh, D., Kamra, A.K., Size distribution of atmospheric aerosols at Maitri, Antarctica. Atmospheric
- 491 Environment, 45, 5138-5149, 2011.
- 492 Preunkert, S., Jourdain, B., Legrand, M., Udisti, R., Becagli, S., Cerri, O. Seasonality of sulfur species (dimethyl
- 493 sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal regions. J. Geophys. Res. 113,
- 494 D15302, 2008.
- 495 Preunkert, S., Legrand, M., Jourdain, B., Moulin, C., Belviso, S., Kasamatsu, N., Fukuchi, M., Hirawake, T.
- 496 Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products
- 497 (methanesulfonate and sulphate) at Dumont d'Urville, coastal Antarctica (1999-2003). J. Geophys. Res. 112,
- 498 2007.
- 499 Quinn, P.K., Coffman, D.J., Johnson, J.E., Upchurch, L.M., Bates, T.S. Small fraction of marine cloud
- 500 condensation nuclei made up of sea spray aerosol, Nature Geoscience, doi:10.1038/NGEO3003, 2017.
- 501 Quinn, P.K., Bates, T.S., Schulz, K.S., Coffman, D.J., Frossard, A.A., Russell, L.M., Keene, W.C., Kieber, D.J.
- 502 Contribution of sea surface carbon pool to organic matter enrichment in sea spry aerosol. Nature Geos. 7,
- 503 228-232, 2014.
- 504 Read, K. A., Lewis, A. C., Bauguitte, S., Rankin, A. M., Salmon, R. A., Wolff, E. W., Saiz-Lopez, A., Bloss W. J.,
- 505 Heard, D. E., Lee, J. D., Plane, J. M. C. DMS and MSA measurements in the Antarctic Boundary Layer:
- 506 impact of BrO on MSA production. Atmos. Chem. Phys. 8, 2985-2997, 2008.
- 507 Savoie, D.L., Prospero, J.M., Larsen, R.J., Huang, F., Izaguirre, M.A., Huang, T., Snowdon, T.H., Custals, L.,

- 508 Sanderson, C.G. Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer, and Marsh (King
- 509 George Island), J. Atmos. Chem. 17, 95-122, 1993.
- 510 Song, X.H., Hopke, P.K., Fergenson, D.P., Prather, K.A. Classification of single particles analyzed by ATOFMS
- 511 using an artificial neural network, ART-2A. Analy. Chem. 71, 860-865, 1999.
- 512 Sorooshian, A., Lu, M. L., Brechtel, F. J., Jonsson, H., Feingold, G., Flagan, R.C., Seinfeld, J.H. On the source of
- 513 organic acid aerosol layers above clouds. Environ. Sci. Technol. 41, 4647-4654, 2007.
- 514 Spreen, G., Kaleschke, L., and Heygster, G. Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys.
- 515 Res., 113, C02S03, 2008.
- 516 Silva, P. J., Carlin, R. A., Prather, K. A. Single particles analysis of suspended soil dust from Southern California.
- 517 Atmos. Environ. 34, 1811-1820, 2000.
- 518 Sitaras, I. E., Siskos, P. A. The role of primary and secondary air pollutants in atmospheric pollution: Athens urban
- 519 area as a case study. Environ. Chem. Lett. 6, 59-69, 2008.
- 520 Tao, J., Zhang, Z., Tan, H., Zhang, L., Wud, Y., Sun, J., Chee, H., Cao, J., Cheng, P., Chen, L., Zhang, R.
- 521 Observation evidence of cloud processes contributing to daytime elevated nitrate in an urban atmosphere.
- 522 Atmos. Environ. 186, 209-215, 2018.
- 523 Taylor, M. H., Losch, M., Bracher, A. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone:
- 524 A modeling approach. J. Geophys. Res. 118, 63-75, 2013.
- 525 Teinila, K., Frey, A., Hillamo, R., Tulp, H. C., Weller, R. A study of the sea-salt chemistry using size-segregated
- 526 aerosol measurements at coastal Antarctic station Neumayer. Atmos. Environ. 96, 11-19, 2014.
- 527 Tian, M., Wang, H., Chen, Y., Zhang, L., Shi, G., Liu, Y., Yu, J., Zhai, C., Wang, J., Yang, F. Highly time-resolved
- 528 characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin,
- 529 China. Sci. Total Environ. 580, 224-234, 2017.

- 530 Wang, S., Bailey, D., Lindsay, K., Moore, J. K., Holland, M. Impact of sea ice on the marine iron cycle and
- 531 phytoplankton productivity. Biogeosciences, 11, 4713-4731, 2014.
- 532 Weller, R., Legrand, M., Preunkert, S. Size distribution and ionic composition of marine summer aerosol at the
- 533 continental Antarctic site Kohnen. Atmos. Chem. Phys., 18, 2413-2430, 2018.
- 534 Yan, J., Lin, Q., Zhao, S., Chen, L., Li, L. Impact of marine and continental sources on aerosol characteristics
- 535 using an on-board SPAMS over Southeast Sea, China. Environ. Sci. Pollution Res. 25, 30659-30670, 2018.
- 536 Young, L. H., Li, C. H., Lin, M. Y., Hwang, B. F., Hsu, H. T., Chen, Y. C., Jung, C. R., Chen, K. C., Cheng, D. H.,
- 537 Wang, V. S., Chiang, H. C., Tsai, P. J. Field performance of semi-continuous monitor for ambient PM2.5
- 538 water-soluble inorganic ions and gases at a suburban site. Atmos. Environ. 144,376-388, 2016.
- 539 Zhang, M., Chen, L., Xu, G., Lin, Q., Liang, M. Linking phytoplankton activity in polynyas and sulfur aerosols
- 540 over Zhongshan Station, East Antarctica. J. Atmos. Sci. 72, 4629-4642, 2015.